Type 2 Diabetes Health Promotion Plan Paper

Description

Steps in the health promotion plan:

  1. Identifying the health promotion topic. base on the article (

    Prevention or Delay of Type 2
    Diabetes: Standards of Medical
    Care in Diabetes)
  2. Defining objectives and goals of the health promotion plan.
  3. Selecting the target population.
  4. Explaining how the problem is affecting health in USA, (updated statistics)
  5. Reviewing of literature (include an article related to your topic)
  6. Describing your role as Nurse Practitioner changing lifestyles in the affected population.
  7. Choosing the strategy of presentation (power point, role play)
  8. Presenting the plan
  9. Evaluating the plan (use appropriate instruments).
  10. Developing the health promotion paper must be 7-10 pages following APA 6

    th

    edition guidelines

PS/Abs is proper length (150-250 words).Highly informative, complete and easy to understand (includes all key aspects of the paper).

Appropriate vocabulary is used. PS/Abs makes you want to read the paper.


10%

Thesis provides a clear and concise response to the assigned/selected topic.

Organization of the topic is completely and clearly outlined and implemented.Does not contain superfluous information.



20%

All main points are well-developed; directly related to the thesis.

Supporting examples are concrete and detailed.

There is a logical flow to the topics/arguments.


30%

Research selected is highly relevant to the topic, and is properly incorporated into the body paragraphs.

The method, results, and implications are presented accurately and completely. Relationship between research and theory is clearly articulated and accurate.

The evidence comes from a wide variety of valid sources; minimum “required” sources published within the last 5 years.


10%

Conclusion is clearly stated, and connections to the research and position are clear and relevant.

The underlying logic is explicit.


10%

Paper is coherently organized. Writing is clear and concise.

Writing is fluid and free from spelling and grammatical errors.

Terminology is clearly defined. Writing uses appropriate voice (active/passive).

APA formatting appropriate.


10%

References are precisely listed in APA format.

In-text citations are used correctly for all quotations and paraphrasing.


10%

Diabetes Care Volume 42, Supplement 1, January 2019
3. Prevention or Delay of Type 2
Diabetes: Standards of Medical
Care in Diabetesd2019
S29
American Diabetes Association
Diabetes Care 2019;42(Suppl. 1):S29–S33 | https://doi.org/10.2337/dc19-S003
3. PREVENTION OR DELAY OF TYPE 2 DIABETES
The American Diabetes Association (ADA) “Standards of Medical Care in Diabetes”
includes ADA’s current clinical practice recommendations and is intended to
provide the components of diabetes care, general treatment goals and guidelines,
and tools to evaluate quality of care. Members of the ADA Professional Practice
Committee, a multidisciplinary expert committee, are responsible for updating
the Standards of Care annually, or more frequently as warranted. For a detailed
description of ADA standards, statements, and reports, as well as the evidencegrading system for ADA’s clinical practice recommendations, please refer to the
Standards of Care Introduction. Readers who wish to comment on the Standards
of Care are invited to do so at professional.diabetes.org/SOC.
For guidelines related to screening for increased risk for type 2 diabetes (prediabetes),
please refer to Section 2 “Classification and Diagnosis of Diabetes.”
Recommendation
3.1 At least annual monitoring for the development of type 2 diabetes in those
with prediabetes is suggested. E
Screening for prediabetes and type 2 diabetes risk through an informal assessment
of risk factors (Table 2.3) or with an assessment tool, such as the American
Diabetes Association risk test (Fig. 2.1), is recommended to guide providers on
whether performing a diagnostic test for prediabetes (Table 2.5) and previously undiagnosed type 2 diabetes (Table 2.2) is appropriate (see Section
2 “Classification and Diagnosis of Diabetes”). Those determined to be at high
risk for type 2 diabetes, including people with A1C 5.726.4% (39247 mmol/mol),
impaired glucose tolerance, or impaired fasting glucose, are ideal candidates
for diabetes prevention efforts. Using A1C to screen for prediabetes may
be problematic in the presence of certain hemoglobinopathies or conditions
that affect red blood cell turnover. See Section 2 “Classification and Diagnosis of
Diabetes” and Section 6 “Glycemic Targets” for additional details on the appropriate
use of the A1C test.
At least annual monitoring for the development of diabetes in those with
prediabetes is suggested.
LIFESTYLE INTERVENTIONS
Recommendations
3.2 Refer patients with prediabetes to an intensive behavioral lifestyle intervention program modeled on the Diabetes Prevention Program (DPP) to achieve
Suggested citation: American Diabetes Association. 3. Prevention or delay of type 2 diabetes:
Standards of Medical Care in Diabetesd2019.
Diabetes Care 2019;42(Suppl. 1):S29–S33
© 2018 by the American Diabetes Association.
Readers may use this article as long as the work
is properly cited, the use is educational and not
for profit, and the work is not altered. More information is available at http://www.diabetesjournals
.org/content/license.
S30
Prevention or Delay of Type 2 Diabetes
and maintain 7% loss of initial body weight and increase
moderate-intensity physical activity (such as brisk walking) to
at least 150 min/week. A
3.3 Based on patient preference,
technology-assisted diabetes
prevention interventions may
be effective in preventing type
2 diabetes and should be considered. B
3.4 Given the cost-effectiveness of
diabetes prevention, such intervention programs should be covered by third-party payers. B
The Diabetes Prevention Program
Several major randomized controlled trials, including the Diabetes Prevention
Program (DPP) (1), the Finnish Diabetes
Prevention Study (DPS) (2), and the Da
Qing Diabetes Prevention Study (Da Qing
study) (3), demonstrate that lifestyle/
behavioral therapy featuring an individualized reduced calorie meal plan is
highly effective in preventing type 2
diabetes and improving other cardiometabolic markers (such as blood pressure,
lipids, and inflammation). The strongest
evidence for diabetes prevention comes
from the DPP trial (1). The DPP demonstrated that an intensive lifestyle intervention could reduce the incidence of
type 2 diabetes by 58% over 3 years.
Follow-up of three large studies of lifestyle intervention for diabetes prevention has shown sustained reduction in
the rate of conversion to type 2 diabetes:
45% reduction at 23 years in the Da Qing
study (3), 43% reduction at 7 years in the
DPS (2), and 34% reduction at 10 years (4)
and 27% reduction at 15 years (5) in the
U.S. Diabetes Prevention Program Outcomes Study (DPPOS). Notably, in the
23-year follow-up for the Da Qing study,
reductions in all-cause mortality and
cardiovascular disease–related mortality were observed for the lifestyle
intervention groups compared with the
control group (3).
The two major goals of the DPP intensive, behavioral, lifestyle intervention
were to achieve and maintain a minimum
of 7% weight loss and 150 min of physical
activity similar in intensity to brisk walking per week. The DPP lifestyle intervention was a goal-based intervention: all
participants were given the same weight
loss and physical activity goals, but individualization was permitted in the
Diabetes Care Volume 42, Supplement 1, January 2019
specific methods used to achieve the
goals (6).
The 7% weight loss goal was selected
because it was feasible to achieve and
maintain and likely to lessen the risk of
developing diabetes. Participants were
encouraged to achieve the 7% weight
loss during the first 6 months of the
intervention. However, longer-term
(4-year) data reveal maximal prevention
of diabetes observed at about 7–10%
weight loss (7). The recommended pace
of weight loss was 122 lb/week. Calorie
goals were calculated by estimating the
daily calories needed to maintain the
participant’s initial weight and subtracting 50021,000 calories/day (depending
on initial body weight). The initial focus
was on reducing total dietary fat. After
several weeks, the concept of calorie
balance and the need to restrict calories
as well as fat was introduced (6).
The goal for physical activity was selected to approximate at least 700 kcal/
week expenditure from physical activity.
For ease of translation, this goal was
described as at least 150 min of moderateintensity physical activity per week
similar in intensity to brisk walking. Participants were encouraged to distribute
their activity throughout the week with
a minimum frequency of three times per
week with at least 10 min per session. A
maximum of 75 min of strength training
could be applied toward the total
150 min/week physical activity goal (6).
To implement the weight loss and
physical activity goals, the DPP used an individual model of treatment rather than
a group-based approach. This choice was
based on a desire to intervene before
participants had the possibility of developing diabetes or losing interest in the
program. The individual approach also
allowed for tailoring of interventions to
reflect the diversity of the population (6).
The DPP intervention was administered as a structured core curriculum
followed by a more flexible maintenance
program of individual sessions, group
classes, motivational campaigns, and restart opportunities. The 16-session core
curriculum was completed within the
first 24 weeks of the program and included sections on lowering calories, increasing physical activity, self-monitoring,
maintaining healthy lifestyle behaviors,
and psychological, social, and motivational
challenges. For further details on the core
curriculum sessions, refer to ref. 6.
Nutrition
Structured behavioral weight loss therapy, including a reduced calorie meal
plan and physical activity, is of paramount importance for those at high
risk for developing type 2 diabetes who
have overweight or obesity (1,7). Because weight loss through lifestyle
changes alone can be difficult to maintain
long term (4), people being treated with
weight loss therapy should have access
to ongoing support and additional therapeutic options (such as pharmacotherapy) if needed. Based on intervention
trials, the eating patterns that may be
helpful for those with prediabetes
include a Mediterranean eating plan
(8–11) and a low-calorie, low-fat eating
plan (5). Additional research is needed
regarding whether a low-carbohydrate
eating plan is beneficial for persons with
prediabetes (12). In addition, evidence
suggests that the overall quality of food
consumed (as measured by the Alternative Healthy Eating Index), with an emphasis on whole grains, legumes, nuts,
fruits and vegetables, and minimal refined and processed foods, is also important (13–15).
Whereas overall healthy low-calorie
eating patterns should be encouraged,
there is also some evidence that particular dietary components impact diabetes
risk in observational studies. Higher intakes of nuts (16), berries (17), yogurt
(18,19), coffee, and tea (20) are associated with reduced diabetes risk. Conversely, red meats and sugar-sweetened
beverages are associated with an increased risk of type 2 diabetes (13).
As is the case for those with diabetes,
individualized medical nutrition therapy
(see Section 5 “Lifestyle Management”
for more detailed information) is effective in lowering A1C in individuals diagnosed with prediabetes (21).
Physical Activity
Just as 150 min/week of moderateintensity physical activity, such as brisk
walking, showed beneficial effects in
those with prediabetes (1), moderateintensity physical activity has been
shown to improve insulin sensitivity
and reduce abdominal fat in children
and young adults (22,23). On the basis
of these findings, providers are encouraged to promote a DPP-style program,
including its focus on physical activity, to
all individuals who have been identified
care.diabetesjournals.org
Prevention or Delay of Type 2 Diabetes
to be at an increased risk of type 2
diabetes. In addition to aerobic activity,
an exercise regimen designed to prevent
diabetes may include resistance training
(6,24). Breaking up prolonged sedentary
time may also be encouraged, as it is
associated with moderately lower postprandial glucose levels (25,26). The preventive effects of exercise appear to
extend to the prevention of gestational
diabetes mellitus (GDM) (27).
are promising (39). In an effort to expand
preventive services using a cost-effective
model that began in April 2018, the Centers
for Medicare & Medicaid Services has
expanded Medicare reimbursement coverage for the National DPP lifestyle intervention to organizations recognized by the
CDC that become Medicare suppliers for
this service (https://innovation.cms.gov/
initiatives/medicare-diabetes-preventionprogram/).
Technology-Assisted Interventions to
Deliver Lifestyle Interventions
Tobacco Use
Technology-assisted interventions may
effectively deliver the DPP lifestyle
intervention, reducing weight and,
therefore, diabetes risk (28–31). Such
technology-assisted interventions may
deliver content through smartphone
and web-based applications and telehealth (28). The Centers for Disease
Control and Prevention (CDC) Diabetes
Prevention Recognition Program (DPRP)
(www.cdc.gov/diabetes/prevention/
lifestyle-program) does certify technologyassisted modalities as effective vehicles
for DPP-based interventions; such programs must use an approved curriculum, include interaction with a coach
(which may be virtual), and attain the
DPRP outcomes of participation, physical activity reporting, and weight loss.
The selection of an in-person or virtual
program should be based on patient
preference.
Cost-effectiveness
A cost-effectiveness model suggested that
the lifestyle intervention used in the DPP
was cost-effective (32,33). Actual cost data
from the DPP and DPPOS confirmed this
(34). Group delivery of DPP content in
community or primary care settings has
the potential to reduce overall program
costs while still producing weight loss and
diabetes risk reduction (35–37). The use of
community health workers to support DPP
efforts has been shown to be effective with
cost savings (38) (see Section 1 “Improving
Care and Promoting Health in Populations”
for more information). The CDC coordinates the National Diabetes Prevention
Program (National DPP), a resource designed to bring evidence-based lifestyle
change programs for preventing type 2
diabetes to communities (www.cdc.gov/
diabetes/prevention/index.htm). Early
results from the CDC’s National DPP
during the first 4 years of implementation
Smoking may increase the risk of type 2
diabetes (40); therefore, evaluation for
tobacco use and referral for tobacco
cessation, if indicated, should be part
of routine care for those at risk for diabetes. Of note, the years immediately
following smoking cessation may represent a time of increased risk for diabetes (40–42) and patients should be
monitored for diabetes development
and receive evidence-based interventions for diabetes prevention as described in this section. See Section
5 “Lifestyle Management” for more detailed information.
PHARMACOLOGIC
INTERVENTIONS
Recommendations
3.5 Metformin therapy for prevention of type 2 diabetes should be
considered in those with prediabetes, especially for those with
BMI $35 kg/m2, those aged
,60 years, and women with
prior gestational diabetes mellitus. A
3.6 Long-term use of metformin may
be associated with biochemical
vitamin B12 deficiency, and periodic measurement of vitamin
B12 levels should be considered
in metformin-treated patients,
especially in those with anemia
or peripheral neuropathy. B
Pharmacologic agents including metformin, a-glucosidase inhibitors, glucagonlike peptide 1 receptor agonists,
thiazolidinediones, and several agents approved for weight loss have been shown in
research studies to decrease the incidence
of diabetes to various degrees in those with
prediabetes (1,43–49), though none are
approved by the U.S. Food and Drug
Administration specifically for diabetes
prevention. One has to balance the risk/
benefit of each medication. Metformin
has the strongest evidence base (50) and
demonstrated long-term safety as pharmacologic therapy for diabetes prevention (48). For other drugs, cost, side
effects, and durable efficacy require
consideration.
Metformin was overall less effective
than lifestyle modification in the DPP
and DPPOS, though group differences
declined over time (5) and metformin
may be cost-saving over a 10-year period
(34). It was as effective as lifestyle modification in participants with BMI $35
kg/m2 but not significantly better than
placebo in those over 60 years of age (1).
In the DPP, for women with history of
GDM, metformin and intensive lifestyle
modification led to an equivalent 50%
reduction in diabetes risk (51), and both
interventions remained highly effective
during a 10-year follow-up period (52).
In the Indian Diabetes Prevention Programme (IDPP-1), metformin and the
lifestyle intervention reduced diabetes
risk similarly at 30 months; of note, the
lifestyle intervention in IDPP-1 was
less intensive than that in the DPP (53).
Based on findings from the DPP, metformin should be recommended as an
option for high-risk individuals (e.g.,
those with a history of GDM or those
with BMI $35 kg/m2). Consider monitoring vitamin B12 levels in those taking
metformin chronically to check for
possible deficiency (54) (see Section 9
“Pharmacologic Approaches to Glycemic
Treatment” for more details).
PREVENTION OF
CARDIOVASCULAR DISEASE
Recommendation
3.7 Prediabetes is associated with
heightened cardiovascular risk;
therefore, screening for and treatment of modifiable risk factors
for cardiovascular disease is suggested. B
People with prediabetes often have other
cardiovascular risk factors, including hypertension and dyslipidemia (55), and are
at increased risk for cardiovascular disease (56). Although treatment goals for
people with prediabetes are the same as
for the general population (57), increased vigilance is warranted to identify
S31
S32
Prevention or Delay of Type 2 Diabetes
and treat these and other cardiovascular
risk factors (e.g., smoking).
DIABETES SELF-MANAGEMENT
EDUCATION AND SUPPORT
Recommendation
3.8 Diabetes self-management education and support programs may
be appropriate venues for people
with prediabetes to receive education and support to develop
and maintain behaviors that
can prevent or delay the development of type 2 diabetes. B
As for those with established diabetes,
the standards for diabetes self-management
education and support (see Section 5
“Lifestyle Management”) can also apply
to people with prediabetes. Currently,
there are significant barriers to the provision of education and support to those
with prediabetes. However, the strategies for supporting successful behavior
change and the healthy behaviors recommended for people with prediabetes
are comparable to those for diabetes.
Although reimbursement remains a barrier, studies show that providers of diabetes self-management education and
support are particularly well equipped to
assist people with prediabetes in developing and maintaining behaviors that
can prevent or delay the development
of diabetes (21,58).
References
1. Knowler WC, Barrett-Connor E, Fowler SE,
et al.; Diabetes Prevention Program Research
Group. Reduction in the incidence of type 2
diabetes with lifestyle intervention or metformin. N Engl J Med 2002;346:393–403
2. Lindström J, Ilanne-Parikka P, Peltonen M,
et al.; Finnish Diabetes Prevention Study Group.
Sustained reduction in the incidence of type 2
diabetes by lifestyle intervention: follow-up of
the Finnish Diabetes Prevention Study. Lancet
2006;368:1673–1679
3. Li G, Zhang P, Wang J, et al. Cardiovascular
mortality, all-cause mortality, and diabetes incidence after lifestyle intervention for people
with impaired glucose tolerance in the Da Qing
Diabetes Prevention Study: a 23-year follow-up
study. Lancet Diabetes Endocrinol 2014;2:474–
480
4. Knowler WC, Fowler SE, Hamman RF, et al.;
Diabetes Prevention Program Research Group.
10-year follow-up of diabetes incidence and
weight loss in the Diabetes Prevention Program
Outcomes Study. Lancet 2009;374:1677–1686
5. Nathan DM, Barrett-Connor E, Crandall JP,
et al. Long-term effects of lifestyle intervention or metformin on diabetes development
Diabetes Care Volume 42, Supplement 1, January 2019
and microvascular complications over 15-year
follow-up: the Diabetes Prevention Program
Outcomes Study. Lancet Diabetes Endocrinol
2015;3:866–875
6. Diabetes Prevention Program (DPP) Research
Group. The Diabetes Prevention Program (DPP):
description of lifestyle intervention. Diabetes
Care 2002;25:2165–2171
7. Hamman RF, Wing RR, Edelstein SL, et al.
Effect of weight loss with lifestyle intervention
on risk of diabetes. Diabetes Care 2006;29:2102–
2107
8. Salas-Salvadó J, Bulló M, Babio N, et al.;
PREDIMED Study Investigators. Reduction in
the incidence of type 2 diabetes with the Mediterranean diet: results of the PREDIMED-Reus
nutrition intervention randomized trial. Diabetes Care 2011;34:14–19
9. Salas-Salvadó J, Guasch-Ferré M, Lee C-H,
Estruch R, Clish CB, Ros E. Protective effects
of the Mediterranean diet on type 2 diabetes
and metabolic syndrome. J Nutr 2016;146:920S–
927S
10. Bloomfield HE, Koeller E, Greer N,
MacDonald R, Kane R, Wilt TJ. Effects on health
outcomes of a Mediterranean diet with no restriction on fat intake: a systematic review and
meta-analysis. Ann Intern Med 2016;165:491–
500
11. Estruch R, Ros E, Salas-Salvadó J, et al.;
PREDIMED Study Investigators. Primary prevention of cardiovascular disease with a Mediterranean diet supplemented with extra-virgin olive
oil or nuts. N Engl J Med 2018;378:e34
12. Noto H, Goto A, Tsujimoto T, Noda M. Longterm low-carbohydrate diets and type 2 diabetes risk: a systematic review and meta-analysis
of observational studies. J Gen Fam Med 2016;
17:60–70
13. Ley SH, Hamdy O, Mohan V, Hu FB. Prevention and management of type 2 diabetes:
dietary components and nutritional strategies.
Lancet 2014;383:1999–2007
14. Jacobs S, Harmon BE, Boushey CJ, et al. A
priori-defined diet quality indexes and risk of
type 2 diabetes: the Multiethnic Cohort. Diabetologia 2015;58:98–112
15. Chiuve SE, Fung TT, Rimm EB, et al. Alternative dietary indices both strongly predict risk
of chronic disease. J Nutr 2012;142:1009–1018
16. Afshin A, Micha R, Khatibzadeh S, Mozaffarian
D. Consumption of nuts and legumes and risk of
incident ischemic heart disease, stroke, and diabetes: a systematic review and meta-analysis.
Am J Clin Nutr 2014;100:278–288
17. Mursu J, Virtanen JK, Tuomainen T-P, Nurmi
T, Voutilainen S. Intake of fruit, berries, and
vegetables and risk of type 2 diabetes in Finnish
men: the Kuopio Ischaemic Heart Disease Risk
Factor Study. Am J Clin Nutr 2014;99:328–333
18. Chen M, Sun Q, Giovannucci E, et al. Dairy
consumption and risk of type 2 diabetes: 3 cohorts of US adults and an updated meta-analysis.
BMC Med 2014;12:215
19. Dehghan M, Mente A, Rangarajan S, et al.;
Prospective Urban Rural Epidemiology (PURE)
study investigators. Association of dairy intake
with cardiovascular disease and mortality in
21 countries from five continents (PURE): a prospective cohort study. Lancet. 11 September
2018 [Epub ahead of print]. DOI: 10.1016/
S0140-6736(18)31812-9
20. Mozaffarian D. Dietary and policy priorities
for cardiovascular disease, diabetes, and obesity:
a comprehensive review. Circulation 2016;133:
187–225
21. Parker AR, Byham-Gray L, Denmark R,
Winkle PJ. The effect of medical nutrition therapy
by a registered dietitian nutritionist in patients
with prediabetes participating in a randomized
controlled clinical research trial. J Acad Nutr Diet
2014;114:1739–1748
22. Fedewa MV, Gist NH, Evans EM, Dishman RK.
Exercise and insulin resistance in youth: a metaanalysis. Pediatrics 2014;133:e163–e174
23. Davis CL, Pollock NK, Waller JL, et al. Exercise
dose and diabetes risk in overweight and obese
children: a randomized controlled trial. JAMA
2012;308:1103–1112
24. Sigal RJ, Alberga AS, Goldfield GS, et al.
Effects of aerobic training, resistance training,
or both on percentage body fat and cardiometabolic risk markers in obese adolescents: the
healthy eating aerobic and resistance training in
youth randomized clinical trial. JAMA Pediatr
2014;168:1006–1014
25. Thorp AA, Kingwell BA, Sethi P, Hammond L,
Owen N, Dunstan DW. Alternating bouts of
sitting and standing attenuate postprandial glucose responses. Med Sci Sports Exerc 2014;46:
2053–2061
26. Healy GN, Dunstan DW, Salmon J, et al.
Breaks in sedentary time: beneficial associations
with metabolic risk. Diabetes Care 2008;31:661–
666
27. Russo LM, Nobles C, Ertel KA, Chasan-Taber
L, Whitcomb BW. Physical activity interventions
in pregnancy and risk of gestational diabetes
mellitus: a systematic review and meta-analysis.
Obstet Gynecol 2015;125:576–582
28. Grock S, Ku J-H, Kim J, Moin T. A review of
technology-assisted interventions for diabetes
prevention. Curr Diab Rep 2017;17:107
29. Sepah SC, Jiang L, Peters AL. Translating the
Diabetes Prevention Program into an online
social network: validation against CDC standards. Diabetes Educ 2014;40:435–443
30. Bian RR, Piatt GA, Sen A, et al. The effect of
technology-mediated diabetes prevention interventions on weight: a meta-analysis. J Med
Internet Res 2017;19:e76
31. Sepah SC, Jiang L, Peters AL. Long-term
outcomes of a Web-based diabetes prevention
program: 2-year results of a single-arm longitudinal study. J Med Internet Res 2015;17:e92
32. Herman WH, Hoerger TJ, Brandle M, et al.;
Diabetes Prevention Program Research Group.
The cost-effectiveness of lifestyle modification
or metformin in preventing type 2 diabetes in
adults with impaired glucose tolerance. Ann
Intern Med 2005;142:323–332
33. Chen F, Su W, Becker SH, et al. Clinical and
economic impact of a digital, remotely-delivered
intensive behavioral counseling program on
Medicare beneficiaries at risk for diabetes and
cardiovascular disease. PLoS One 2016;11:
e0163627
34. Diabetes Prevention Program Research
Group. The 10-year cost-effectiveness of lifestyle
intervention or metformin for diabetes prevention: an intent-to-treat analysis of the DPP/
DPPOS. Diabetes Care 2012;35:723–730
35. Ackermann RT, Finch EA, Brizendine E, Zhou
H, Marrero DG. Translating the Diabetes
care.diabetesjournals.org
Prevention Program into the community. The
DEPLOY Pilot Study. Am J Prev Med 2008;35:357–
363
36. Balk EM, Earley A, Raman G, Avendano EA,
Pittas AG, Remington PL. Combined diet and
physical activity promotion programs to prevent
type 2 diabetes among persons at increased risk:
a systematic review for the Community Preventive Services Task Force. Ann Intern Med 2015;
163:437–451
37. Li R, Qu S, Zhang P, et al. Economic evaluation
of combined diet and physical activity promotion programs to prevent type 2 diabetes among
persons at increased risk: a systematic review for
the Community Preventive Services Task Force.
Ann Intern Med 2015;163:452–460
38. The Community Guide. Diabetes prevention: interventions engaging community health
workers [Internet], 2016. Available from https://
www.thecommunityguide.org/findings/diabetesprevention-interventions-engaging-communityhealth-workers. Accessed 25 September 2018
39. Ely EK, Gruss SM, Luman ET, et al. A national
effort to prevent type 2 diabetes: participantlevel evaluation of CDC’s National Diabetes Prevention Program. Diabetes Care 2017;40:1331–
1341
40. Yeh H-C, Duncan BB, Schmidt MI, Wang N-Y,
Brancati FL. Smoking, smoking cessation, and risk
for type 2 diabetes mellitus: a cohort study. Ann
Intern Med 2010;152:10–17
41. Oba S, Noda M, Waki K, et al. Smoking
cessation increases short-term risk of type 2
diabetes irrespective of weight gain: the Japan
Public Health Center-Based Prospective Study
[published correction appears in PLoS One 2013;
8:10.1371/annotation/23aa7c42-9a4d-42a78f50-9d0ac4b85396]. PLoS One 2012;7:e17061
42. Hu Y, Zong G, Liu G, et al. Smoking cessation,
weight change, type 2 diabetes, and mortality.
N Engl J Med 2018;379:623–632
43. Chiasson J-L, Josse RG, Gomis R, Hanefeld M,
Karasik A, Laakso M; STOP-NIDDM Trail Research
Group. Acarbose for prevention of type 2
Prevention or Delay of Type 2 Diabetes
diabetes mellitus: the STOP-NIDDM randomised
trial. Lancet 2002;359:2072–2077
44. Torgerson JS, Hauptman J, Boldrin MN,
Sjöström L. XENical in the prevention of Diabetes
in Obese Subjects (XENDOS) study: a randomized
study of orlistat as an adjunct to lifestyle changes
for the prevention of type 2 diabetes in obese
patients. Diabetes Care 2004;27:155–161
45. le Roux CW, Astrup A, Fujioka K, et al.; SCALE
Obesity Prediabetes NN8022-1839 Study Group.
3 years of liraglutide versus placebo for type 2
diabetes risk reduction and weight management
in individuals with prediabetes: a randomised,
double-blind trial. Lancet 2017;389:1399–1409
46. Gerstein HC, Yusuf S, Bosch J, et al.; DREAM
(Diabetes REduction Assessment with ramipril
and rosiglitazone Medication) Trial Investigators.
Effect of rosiglitazone on the frequency of diabetes in patients with impaired glucose tolerance or impaired fasting glucose: a randomised
controlled trial. Lancet 2006;368:1096–1105
47. DeFronzo RA, Tripathy D, Schwenke DC,
et al.; ACT NOW Study. Pioglitazone for diabetes
prevention in impaired glucose tolerance. N Engl
J Med 2011;364:1104–1115
48. Diabetes Prevention Program Research
Group. Long-term safety, tolerability, and weight
loss associated with metformin in the Diabetes
Prevention Program Outcomes Study. Diabetes
Care 2012;35:731–737
49. Garvey WT, Ryan DH, Henry R, et al. Prevention of type 2 diabetes in subjects with
prediabetes and metabolic syndrome treated
with phentermine and topiramate extended release. Diabetes Care 2014;37:912–921
50. Moin T, Schmittdiel JA, Flory JH, et al. Review
of metformin use for type 2 diabetes prevention.
Am J Prev Med 2018;55:565–574
51. Ratner RE, Christophi CA, Metzger BE, et al.;
Diabetes Prevention Program Research Group.
Prevention of diabetes in women with a history
of gestational diabetes: effects of metformin
and lifestyle interventions. J Clin Endocrinol
Metab 2008;93:4774–4779
52. Aroda VR, Christophi CA, Edelstein SL, et al.;
Diabetes Prevention Program Research Group.
The effect of lifestyle intervention and metformin
on preventing or delaying diabetes among
women with and without gestational diabetes:
the Diabetes Prevention Program Outcomes
Study 10-year follow-up. J Clin Endocrinol Metab
2015;100:1646–1653
53. Ramachandran A, Snehalatha C, Mary S,
Mukesh B, Bhaskar AD, Vijay V; Indian Diabetes
Prevention Programme (IDPP). The Indian Diabetes Prevention Programme shows that lifestyle modification and metformin prevent type 2
diabetes in Asian Indian subjects with impaired
glucose tolerance (IDPP-1). Diabetologia 2006;
49:289–297
54. Aroda VR, Edelstein SL, Goldberg RB, et al.;
Diabetes Prevention Program Research Group.
Long-term metformin use and vitamin B12 deficiency in the Diabetes Prevention Program
Outcomes Study. J Clin Endocrinol Metab
2016;101:1754–1761
55. Ali MK, Bullard KM, Saydah S, Imperatore G,
Gregg EW. Cardiovascular and renal burdens of
prediabetes in the USA: analysis of data from
serial cross-sectional surveys, 1988–2014. Lancet
Diabetes Endocrinol 2018;6:392–403
56. Huang Y, Cai X, Mai W, Li M, Hu Y. Association between prediabetes and risk of cardiovascular disease and all cause mortality:
systematic review and meta-analysis. BMJ
2016;355:i5953
57. Bress AP, King JB, Kreider KE, et al.; SPRINT
Research Group. Effect of intensive versus
standard blood pressure treatment according to
baseline prediabetes status: a post hoc analysis
of a randomized trial. Diabetes Care 2017;40:
1401–1408
58. Butcher MK, Vanderwood KK, Hall TO,
Gohdes D, Helgerson SD, Harwell TS. Capacity
of diabetes education programs to provide both
diabetes self-management education and to
implement diabetes prevention services. J Public
Health Manag Pract 2011;17:242–247
S33
Copyright of Diabetes Care is the property of American Diabetes Association and its content
may not be copied or emailed to multiple sites or posted to a listserv without the copyright
holder’s express written permission. However, users may print, download, or email articles for
individual use.
Diabetes Care Volume 42, Supplement 1, January 2019
3. Prevention or Delay of Type 2
Diabetes: Standards of Medical
Care in Diabetesd2019
S29
American Diabetes Association
Diabetes Care 2019;42(Suppl. 1):S29–S33 | https://doi.org/10.2337/dc19-S003
3. PREVENTION OR DELAY OF TYPE 2 DIABETES
The American Diabetes Association (ADA) “Standards of Medical Care in Diabetes”
includes ADA’s current clinical practice recommendations and is intended to
provide the components of diabetes care, general treatment goals and guidelines,
and tools to evaluate quality of care. Members of the ADA Professional Practice
Committee, a multidisciplinary expert committee, are responsible for updating
the Standards of Care annually, or more frequently as warranted. For a detailed
description of ADA standards, statements, and reports, as well as the evidencegrading system for ADA’s clinical practice recommendations, please refer to the
Standards of Care Introduction. Readers who wish to comment on the Standards
of Care are invited to do so at professional.diabetes.org/SOC.
For guidelines related to screening for increased risk for type 2 diabetes (prediabetes),
please refer to Section 2 “Classification and Diagnosis of Diabetes.”
Recommendation
3.1 At least annual monitoring for the development of type 2 diabetes in those
with prediabetes is suggested. E
Screening for prediabetes and type 2 diabetes risk through an informal assessment
of risk factors (Table 2.3) or with an assessment tool, such as the American
Diabetes Association risk test (Fig. 2.1), is recommended to guide providers on
whether performing a diagnostic test for prediabetes (Table 2.5) and previously undiagnosed type 2 diabetes (Table 2.2) is appropriate (see Section
2 “Classification and Diagnosis of Diabetes”). Those determined to be at high
risk for type 2 diabetes, including people with A1C 5.726.4% (39247 mmol/mol),
impaired glucose tolerance, or impaired fasting glucose, are ideal candidates
for diabetes prevention efforts. Using A1C to screen for prediabetes may
be problematic in the presence of certain hemoglobinopathies or conditions
that affect red blood cell turnover. See Section 2 “Classification and Diagnosis of
Diabetes” and Section 6 “Glycemic Targets” for additional details on the appropriate
use of the A1C test.
At least annual monitoring for the development of diabetes in those with
prediabetes is suggested.
LIFESTYLE INTERVENTIONS
Recommendations
3.2 Refer patients with prediabetes to an intensive behavioral lifestyle intervention program modeled on the Diabetes Prevention Program (DPP) to achieve
Suggested citation: American Diabetes Association. 3. Prevention or delay of type 2 diabetes:
Standards of Medical Care in Diabetesd2019.
Diabetes Care 2019;42(Suppl. 1):S29–S33
© 2018 by the American Diabetes Association.
Readers may use this article as long as the work
is properly cited, the use is educational and not
for profit, and the work is not altered. More information is available at http://www.diabetesjournals
.org/content/license.
S30
Prevention or Delay of Type 2 Diabetes
and maintain 7% loss of initial body weight and increase
moderate-intensity physical activity (such as brisk walking) to
at least 150 min/week. A
3.3 Based on patient preference,
technology-assisted diabetes
prevention interventions may
be effective in preventing type
2 diabetes and should be considered. B
3.4 Given the cost-effectiveness of
diabetes prevention, such intervention programs should be covered by third-party payers. B
The Diabetes Prevention Program
Several major randomized controlled trials, including the Diabetes Prevention
Program (DPP) (1), the Finnish Diabetes
Prevention Study (DPS) (2), and the Da
Qing Diabetes Prevention Study (Da Qing
study) (3), demonstrate that lifestyle/
behavioral therapy featuring an individualized reduced calorie meal plan is
highly effective in preventing type 2
diabetes and improving other cardiometabolic markers (such as blood pressure,
lipids, and inflammation). The strongest
evidence for diabetes prevention comes
from the DPP trial (1). The DPP demonstrated that an intensive lifestyle intervention could reduce the incidence of
type 2 diabetes by 58% over 3 years.
Follow-up of three large studies of lifestyle intervention for diabetes prevention has shown sustained reduction in
the rate of conversion to type 2 diabetes:
45% reduction at 23 years in the Da Qing
study (3), 43% reduction at 7 years in the
DPS (2), and 34% reduction at 10 years (4)
and 27% reduction at 15 years (5) in the
U.S. Diabetes Prevention Program Outcomes Study (DPPOS). Notably, in the
23-year follow-up for the Da Qing study,
reductions in all-cause mortality and
cardiovascular disease–related mortality were observed for the lifestyle
intervention groups compared with the
control group (3).
The two major goals of the DPP intensive, behavioral, lifestyle intervention
were to achieve and maintain a minimum
of 7% weight loss and 150 min of physical
activity similar in intensity to brisk walking per week. The DPP lifestyle intervention was a goal-based intervention: all
participants were given the same weight
loss and physical activity goals, but individualization was permitted in the
Diabetes Care Volume 42, Supplement 1, January 2019
specific methods used to achieve the
goals (6).
The 7% weight loss goal was selected
because it was feasible to achieve and
maintain and likely to lessen the risk of
developing diabetes. Participants were
encouraged to achieve the 7% weight
loss during the first 6 months of the
intervention. However, longer-term
(4-year) data reveal maximal prevention
of diabetes observed at about 7–10%
weight loss (7). The recommended pace
of weight loss was 122 lb/week. Calorie
goals were calculated by estimating the
daily calories needed to maintain the
participant’s initial weight and subtracting 50021,000 calories/day (depending
on initial body weight). The initial focus
was on reducing total dietary fat. After
several weeks, the concept of calorie
balance and the need to restrict calories
as well as fat was introduced (6).
The goal for physical activity was selected to approximate at least 700 kcal/
week expenditure from physical activity.
For ease of translation, this goal was
described as at least 150 min of moderateintensity physical activity per week
similar in intensity to brisk walking. Participants were encouraged to distribute
their activity throughout the week with
a minimum frequency of three times per
week with at least 10 min per session. A
maximum of 75 min of strength training
could be applied toward the total
150 min/week physical activity goal (6).
To implement the weight loss and
physical activity goals, the DPP used an individual model of treatment rather than
a group-based approach. This choice was
based on a desire to intervene before
participants had the possibility of developing diabetes or losing interest in the
program. The individual approach also
allowed for tailoring of interventions to
reflect the diversity of the population (6).
The DPP intervention was administered as a structured core curriculum
followed by a more flexible maintenance
program of individual sessions, group
classes, motivational campaigns, and restart opportunities. The 16-session core
curriculum was completed within the
first 24 weeks of the program and included sections on lowering calories, increasing physical activity, self-monitoring,
maintaining healthy lifestyle behaviors,
and psychological, social, and motivational
challenges. For further details on the core
curriculum sessions, refer to ref. 6.
Nutrition
Structured behavioral weight loss therapy, including a reduced calorie meal
plan and physical activity, is of paramount importance for those at high
risk for developing type 2 diabetes who
have overweight or obesity (1,7). Because weight loss through lifestyle
changes alone can be difficult to maintain
long term (4), people being treated with
weight loss therapy should have access
to ongoing support and additional therapeutic options (such as pharmacotherapy) if needed. Based on intervention
trials, the eating patterns that may be
helpful for those with prediabetes
include a Mediterranean eating plan
(8–11) and a low-calorie, low-fat eating
plan (5). Additional research is needed
regarding whether a low-carbohydrate
eating plan is beneficial for persons with
prediabetes (12). In addition, evidence
suggests that the overall quality of food
consumed (as measured by the Alternative Healthy Eating Index), with an emphasis on whole grains, legumes, nuts,
fruits and vegetables, and minimal refined and processed foods, is also important (13–15).
Whereas overall healthy low-calorie
eating patterns should be encouraged,
there is also some evidence that particular dietary components impact diabetes
risk in observational studies. Higher intakes of nuts (16), berries (17), yogurt
(18,19), coffee, and tea (20) are associated with reduced diabetes risk. Conversely, red meats and sugar-sweetened
beverages are associated with an increased risk of type 2 diabetes (13).
As is the case for those with diabetes,
individualized medical nutrition therapy
(see Section 5 “Lifestyle Management”
for more detailed information) is effective in lowering A1C in individuals diagnosed with prediabetes (21).
Physical Activity
Just as 150 min/week of moderateintensity physical activity, such as brisk
walking, showed beneficial effects in
those with prediabetes (1), moderateintensity physical activity has been
shown to improve insulin sensitivity
and reduce abdominal fat in children
and young adults (22,23). On the basis
of these findings, providers are encouraged to promote a DPP-style program,
including its focus on physical activity, to
all individuals who have been identified
care.diabetesjournals.org
Prevention or Delay of Type 2 Diabetes
to be at an increased risk of type 2
diabetes. In addition to aerobic activity,
an exercise regimen designed to prevent
diabetes may include resistance training
(6,24). Breaking up prolonged sedentary
time may also be encouraged, as it is
associated with moderately lower postprandial glucose levels (25,26). The preventive effects of exercise appear to
extend to the prevention of gestational
diabetes mellitus (GDM) (27).
are promising (39). In an effort to expand
preventive services using a cost-effective
model that began in April 2018, the Centers
for Medicare & Medicaid Services has
expanded Medicare reimbursement coverage for the National DPP lifestyle intervention to organizations recognized by the
CDC that become Medicare suppliers for
this service (https://innovation.cms.gov/
initiatives/medicare-diabetes-preventionprogram/).
Technology-Assisted Interventions to
Deliver Lifestyle Interventions
Tobacco Use
Technology-assisted interventions may
effectively deliver the DPP lifestyle
intervention, reducing weight and,
therefore, diabetes risk (28–31). Such
technology-assisted interventions may
deliver content through smartphone
and web-based applications and telehealth (28). The Centers for Disease
Control and Prevention (CDC) Diabetes
Prevention Recognition Program (DPRP)
(www.cdc.gov/diabetes/prevention/
lifestyle-program) does certify technologyassisted modalities as effective vehicles
for DPP-based interventions; such programs must use an approved curriculum, include interaction with a coach
(which may be virtual), and attain the
DPRP outcomes of participation, physical activity reporting, and weight loss.
The selection of an in-person or virtual
program should be based on patient
preference.
Cost-effectiveness
A cost-effectiveness model suggested that
the lifestyle intervention used in the DPP
was cost-effective (32,33). Actual cost data
from the DPP and DPPOS confirmed this
(34). Group delivery of DPP content in
community or primary care settings has
the potential to reduce overall program
costs while still producing weight loss and
diabetes risk reduction (35–37). The use of
community health workers to support DPP
efforts has been shown to be effective with
cost savings (38) (see Section 1 “Improving
Care and Promoting Health in Populations”
for more information). The CDC coordinates the National Diabetes Prevention
Program (National DPP), a resource designed to bring evidence-based lifestyle
change programs for preventing type 2
diabetes to communities (www.cdc.gov/
diabetes/prevention/index.htm). Early
results from the CDC’s National DPP
during the first 4 years of implementation
Smoking may increase the risk of type 2
diabetes (40); therefore, evaluation for
tobacco use and referral for tobacco
cessation, if indicated, should be part
of routine care for those at risk for diabetes. Of note, the years immediately
following smoking cessation may represent a time of increased risk for diabetes (40–42) and patients should be
monitored for diabetes development
and receive evidence-based interventions for diabetes prevention as described in this section. See Section
5 “Lifestyle Management” for more detailed information.
PHARMACOLOGIC
INTERVENTIONS
Recommendations
3.5 Metformin therapy for prevention of type 2 diabetes should be
considered in those with prediabetes, especially for those with
BMI $35 kg/m2, those aged
,60 years, and women with
prior gestational diabetes mellitus. A
3.6 Long-term use of metformin may
be associated with biochemical
vitamin B12 deficiency, and periodic measurement of vitamin
B12 levels should be considered
in metformin-treated patients,
especially in those with anemia
or peripheral neuropathy. B
Pharmacologic agents including metformin, a-glucosidase inhibitors, glucagonlike peptide 1 receptor agonists,
thiazolidinediones, and several agents approved for weight loss have been shown in
research studies to decrease the incidence
of diabetes to various degrees in those with
prediabetes (1,43–49), though none are
approved by the U.S. Food and Drug
Administration specifically for diabetes
prevention. One has to balance the risk/
benefit of each medication. Metformin
has the strongest evidence base (50) and
demonstrated long-term safety as pharmacologic therapy for diabetes prevention (48). For other drugs, cost, side
effects, and durable efficacy require
consideration.
Metformin was overall less effective
than lifestyle modification in the DPP
and DPPOS, though group differences
declined over time (5) and metformin
may be cost-saving over a 10-year period
(34). It was as effective as lifestyle modification in participants with BMI $35
kg/m2 but not significantly better than
placebo in those over 60 years of age (1).
In the DPP, for women with history of
GDM, metformin and intensive lifestyle
modification led to an equivalent 50%
reduction in diabetes risk (51), and both
interventions remained highly effective
during a 10-year follow-up period (52).
In the Indian Diabetes Prevention Programme (IDPP-1), metformin and the
lifestyle intervention reduced diabetes
risk similarly at 30 months; of note, the
lifestyle intervention in IDPP-1 was
less intensive than that in the DPP (53).
Based on findings from the DPP, metformin should be recommended as an
option for high-risk individuals (e.g.,
those with a history of GDM or those
with BMI $35 kg/m2). Consider monitoring vitamin B12 levels in those taking
metformin chronically to check for
possible deficiency (54) (see Section 9
“Pharmacologic Approaches to Glycemic
Treatment” for more details).
PREVENTION OF
CARDIOVASCULAR DISEASE
Recommendation
3.7 Prediabetes is associated with
heightened cardiovascular risk;
therefore, screening for and treatment of modifiable risk factors
for cardiovascular disease is suggested. B
People with prediabetes often have other
cardiovascular risk factors, including hypertension and dyslipidemia (55), and are
at increased risk for cardiovascular disease (56). Although treatment goals for
people with prediabetes are the same as
for the general population (57), increased vigilance is warranted to identify
S31
S32
Prevention or Delay of Type 2 Diabetes
and treat these and other cardiovascular
risk factors (e.g., smoking).
DIABETES SELF-MANAGEMENT
EDUCATION AND SUPPORT
Recommendation
3.8 Diabetes self-management education and support programs may
be appropriate venues for people
with prediabetes to receive education and support to develop
and maintain behaviors that
can prevent or delay the development of type 2 diabetes. B
As for those with established diabetes,
the standards for diabetes self-management
education and support (see Section 5
“Lifestyle Management”) can also apply
to people with prediabetes. Currently,
there are significant barriers to the provision of education and support to those
with prediabetes. However, the strategies for supporting successful behavior
change and the healthy behaviors recommended for people with prediabetes
are comparable to those for diabetes.
Although reimbursement remains a barrier, studies show that providers of diabetes self-management education and
support are particularly well equipped to
assist people with prediabetes in developing and maintaining behaviors that
can prevent or delay the development
of diabetes (21,58).
References
1. Knowler WC, Barrett-Connor E, Fowler SE,
et al.; Diabetes Prevention Program Research
Group. Reduction in the incidence of type 2
diabetes with lifestyle intervention or metformin. N Engl J Med 2002;346:393–403
2. Lindström J, Ilanne-Parikka P, Peltonen M,
et al.; Finnish Diabetes Prevention Study Group.
Sustained reduction in the incidence of type 2
diabetes by lifestyle intervention: follow-up of
the Finnish Diabetes Prevention Study. Lancet
2006;368:1673–1679
3. Li G, Zhang P, Wang J, et al. Cardiovascular
mortality, all-cause mortality, and diabetes incidence after lifestyle intervention for people
with impaired glucose tolerance in the Da Qing
Diabetes Prevention Study: a 23-year follow-up
study. Lancet Diabetes Endocrinol 2014;2:474–
480
4. Knowler WC, Fowler SE, Hamman RF, et al.;
Diabetes Prevention Program Research Group.
10-year follow-up of diabetes incidence and
weight loss in the Diabetes Prevention Program
Outcomes Study. Lancet 2009;374:1677–1686
5. Nathan DM, Barrett-Connor E, Crandall JP,
et al. Long-term effects of lifestyle intervention or metformin on diabetes development
Diabetes Care Volume 42, Supplement 1, January 2019
and microvascular complications over 15-year
follow-up: the Diabetes Prevention Program
Outcomes Study. Lancet Diabetes Endocrinol
2015;3:866–875
6. Diabetes Prevention Program (DPP) Research
Group. The Diabetes Prevention Program (DPP):
description of lifestyle intervention. Diabetes
Care 2002;25:2165–2171
7. Hamman RF, Wing RR, Edelstein SL, et al.
Effect of weight loss with lifestyle intervention
on risk of diabetes. Diabetes Care 2006;29:2102–
2107
8. Salas-Salvadó J, Bulló M, Babio N, et al.;
PREDIMED Study Investigators. Reduction in
the incidence of type 2 diabetes with the Mediterranean diet: results of the PREDIMED-Reus
nutrition intervention randomized trial. Diabetes Care 2011;34:14–19
9. Salas-Salvadó J, Guasch-Ferré M, Lee C-H,
Estruch R, Clish CB, Ros E. Protective effects
of the Mediterranean diet on type 2 diabetes
and metabolic syndrome. J Nutr 2016;146:920S–
927S
10. Bloomfield HE, Koeller E, Greer N,
MacDonald R, Kane R, Wilt TJ. Effects on health
outcomes of a Mediterranean diet with no restriction on fat intake: a systematic review and
meta-analysis. Ann Intern Med 2016;165:491–
500
11. Estruch R, Ros E, Salas-Salvadó J, et al.;
PREDIMED Study Investigators. Primary prevention of cardiovascular disease with a Mediterranean diet supplemented with extra-virgin olive
oil or nuts. N Engl J Med 2018;378:e34
12. Noto H, Goto A, Tsujimoto T, Noda M. Longterm low-carbohydrate diets and type 2 diabetes risk: a systematic review and meta-analysis
of observational studies. J Gen Fam Med 2016;
17:60–70
13. Ley SH, Hamdy O, Mohan V, Hu FB. Prevention and management of type 2 diabetes:
dietary components and nutritional strategies.
Lancet 2014;383:1999–2007
14. Jacobs S, Harmon BE, Boushey CJ, et al. A
priori-defined diet quality indexes and risk of
type 2 diabetes: the Multiethnic Cohort. Diabetologia 2015;58:98–112
15. Chiuve SE, Fung TT, Rimm EB, et al. Alternative dietary indices both strongly predict risk
of chronic disease. J Nutr 2012;142:1009–1018
16. Afshin A, Micha R, Khatibzadeh S, Mozaffarian
D. Consumption of nuts and legumes and risk of
incident ischemic heart disease, stroke, and diabetes: a systematic review and meta-analysis.
Am J Clin Nutr 2014;100:278–288
17. Mursu J, Virtanen JK, Tuomainen T-P, Nurmi
T, Voutilainen S. Intake of fruit, berries, and
vegetables and risk of type 2 diabetes in Finnish
men: the Kuopio Ischaemic Heart Disease Risk
Factor Study. Am J Clin Nutr 2014;99:328–333
18. Chen M, Sun Q, Giovannucci E, et al. Dairy
consumption and risk of type 2 diabetes: 3 cohorts of US adults and an updated meta-analysis.
BMC Med 2014;12:215
19. Dehghan M, Mente A, Rangarajan S, et al.;
Prospective Urban Rural Epidemiology (PURE)
study investigators. Association of dairy intake
with cardiovascular disease and mortality in
21 countries from five continents (PURE): a prospective cohort study. Lancet. 11 September
2018 [Epub ahead of print]. DOI: 10.1016/
S0140-6736(18)31812-9
20. Mozaffarian D. Dietary and policy priorities
for cardiovascular disease, diabetes, and obesity:
a comprehensive review. Circulation 2016;133:
187–225
21. Parker AR, Byham-Gray L, Denmark R,
Winkle PJ. The effect of medical nutrition therapy
by a registered dietitian nutritionist in patients
with prediabetes participating in a randomized
controlled clinical research trial. J Acad Nutr Diet
2014;114:1739–1748
22. Fedewa MV, Gist NH, Evans EM, Dishman RK.
Exercise and insulin resistance in youth: a metaanalysis. Pediatrics 2014;133:e163–e174
23. Davis CL, Pollock NK, Waller JL, et al. Exercise
dose and diabetes risk in overweight and obese
children: a randomized controlled trial. JAMA
2012;308:1103–1112
24. Sigal RJ, Alberga AS, Goldfield GS, et al.
Effects of aerobic training, resistance training,
or both on percentage body fat and cardiometabolic risk markers in obese adolescents: the
healthy eating aerobic and resistance training in
youth randomized clinical trial. JAMA Pediatr
2014;168:1006–1014
25. Thorp AA, Kingwell BA, Sethi P, Hammond L,
Owen N, Dunstan DW. Alternating bouts of
sitting and standing attenuate postprandial glucose responses. Med Sci Sports Exerc 2014;46:
2053–2061
26. Healy GN, Dunstan DW, Salmon J, et al.
Breaks in sedentary time: beneficial associations
with metabolic risk. Diabetes Care 2008;31:661–
666
27. Russo LM, Nobles C, Ertel KA, Chasan-Taber
L, Whitcomb BW. Physical activity interventions
in pregnancy and risk of gestational diabetes
mellitus: a systematic review and meta-analysis.
Obstet Gynecol 2015;125:576–582
28. Grock S, Ku J-H, Kim J, Moin T. A review of
technology-assisted interventions for diabetes
prevention. Curr Diab Rep 2017;17:107
29. Sepah SC, Jiang L, Peters AL. Translating the
Diabetes Prevention Program into an online
social network: validation against CDC standards. Diabetes Educ 2014;40:435–443
30. Bian RR, Piatt GA, Sen A, et al. The effect of
technology-mediated diabetes prevention interventions on weight: a meta-analysis. J Med
Internet Res 2017;19:e76
31. Sepah SC, Jiang L, Peters AL. Long-term
outcomes of a Web-based diabetes prevention
program: 2-year results of a single-arm longitudinal study. J Med Internet Res 2015;17:e92
32. Herman WH, Hoerger TJ, Brandle M, et al.;
Diabetes Prevention Program Research Group.
The cost-effectiveness of lifestyle modification
or metformin in preventing type 2 diabetes in
adults with impaired glucose tolerance. Ann
Intern Med 2005;142:323–332
33. Chen F, Su W, Becker SH, et al. Clinical and
economic impact of a digital, remotely-delivered
intensive behavioral counseling program on
Medicare beneficiaries at risk for diabetes and
cardiovascular disease. PLoS One 2016;11:
e0163627
34. Diabetes Prevention Program Research
Group. The 10-year cost-effectiveness of lifestyle
intervention or metformin for diabetes prevention: an intent-to-treat analysis of the DPP/
DPPOS. Diabetes Care 2012;35:723–730
35. Ackermann RT, Finch EA, Brizendine E, Zhou
H, Marrero DG. Translating the Diabetes
care.diabetesjournals.org
Prevention Program into the community. The
DEPLOY Pilot Study. Am J Prev Med 2008;35:357–
363
36. Balk EM, Earley A, Raman G, Avendano EA,
Pittas AG, Remington PL. Combined diet and
physical activity promotion programs to prevent
type 2 diabetes among persons at increased risk:
a systematic review for the Community Preventive Services Task Force. Ann Intern Med 2015;
163:437–451
37. Li R, Qu S, Zhang P, et al. Economic evaluation
of combined diet and physical activity promotion programs to prevent type 2 diabetes among
persons at increased risk: a systematic review for
the Community Preventive Services Task Force.
Ann Intern Med 2015;163:452–460
38. The Community Guide. Diabetes prevention: interventions engaging community health
workers [Internet], 2016. Available from https://
www.thecommunityguide.org/findings/diabetesprevention-interventions-engaging-communityhealth-workers. Accessed 25 September 2018
39. Ely EK, Gruss SM, Luman ET, et al. A national
effort to prevent type 2 diabetes: participantlevel evaluation of CDC’s National Diabetes Prevention Program. Diabetes Care 2017;40:1331–
1341
40. Yeh H-C, Duncan BB, Schmidt MI, Wang N-Y,
Brancati FL. Smoking, smoking cessation, and risk
for type 2 diabetes mellitus: a cohort study. Ann
Intern Med 2010;152:10–17
41. Oba S, Noda M, Waki K, et al. Smoking
cessation increases short-term risk of type 2
diabetes irrespective of weight gain: the Japan
Public Health Center-Based Prospective Study
[published correction appears in PLoS One 2013;
8:10.1371/annotation/23aa7c42-9a4d-42a78f50-9d0ac4b85396]. PLoS One 2012;7:e17061
42. Hu Y, Zong G, Liu G, et al. Smoking cessation,
weight change, type 2 diabetes, and mortality.
N Engl J Med 2018;379:623–632
43. Chiasson J-L, Josse RG, Gomis R, Hanefeld M,
Karasik A, Laakso M; STOP-NIDDM Trail Research
Group. Acarbose for prevention of type 2
Prevention or Delay of Type 2 Diabetes
diabetes mellitus: the STOP-NIDDM randomised
trial. Lancet 2002;359:2072–2077
44. Torgerson JS, Hauptman J, Boldrin MN,
Sjöström L. XENical in the prevention of Diabetes
in Obese Subjects (XENDOS) study: a randomized
study of orlistat as an adjunct to lifestyle changes
for the prevention of type 2 diabetes in obese
patients. Diabetes Care 2004;27:155–161
45. le Roux CW, Astrup A, Fujioka K, et al.; SCALE
Obesity Prediabetes NN8022-1839 Study Group.
3 years of liraglutide versus placebo for type 2
diabetes risk reduction and weight management
in individuals with prediabetes: a randomised,
double-blind trial. Lancet 2017;389:1399–1409
46. Gerstein HC, Yusuf S, Bosch J, et al.; DREAM
(Diabetes REduction Assessment with ramipril
and rosiglitazone Medication) Trial Investigators.
Effect of rosiglitazone on the frequency of diabetes in patients with impaired glucose tolerance or impaired fasting glucose: a randomised
controlled trial. Lancet 2006;368:1096–1105
47. DeFronzo RA, Tripathy D, Schwenke DC,
et al.; ACT NOW Study. Pioglitazone for diabetes
prevention in impaired glucose tolerance. N Engl
J Med 2011;364:1104–1115
48. Diabetes Prevention Program Research
Group. Long-term safety, tolerability, and weight
loss associated with metformin in the Diabetes
Prevention Program Outcomes Study. Diabetes
Care 2012;35:731–737
49. Garvey WT, Ryan DH, Henry R, et al. Prevention of type 2 diabetes in subjects with
prediabetes and metabolic syndrome treated
with phentermine and topiramate extended release. Diabetes Care 2014;37:912–921
50. Moin T, Schmittdiel JA, Flory JH, et al. Review
of metformin use for type 2 diabetes prevention.
Am J Prev Med 2018;55:565–574
51. Ratner RE, Christophi CA, Metzger BE, et al.;
Diabetes Prevention Program Research Group.
Prevention of diabetes in women with a history
of gestational diabetes: effects of metformin
and lifestyle interventions. J Clin Endocrinol
Metab 2008;93:4774–4779
52. Aroda VR, Christophi CA, Edelstein SL, et al.;
Diabetes Prevention Program Research Group.
The effect of lifestyle intervention and metformin
on preventing or delaying diabetes among
women with and without gestational diabetes:
the Diabetes Prevention Program Outcomes
Study 10-year follow-up. J Clin Endocrinol Metab
2015;100:1646–1653
53. Ramachandran A, Snehalatha C, Mary S,
Mukesh B, Bhaskar AD, Vijay V; Indian Diabetes
Prevention Programme (IDPP). The Indian Diabetes Prevention Programme shows that lifestyle modification and metformin prevent type 2
diabetes in Asian Indian subjects with impaired
glucose tolerance (IDPP-1). Diabetologia 2006;
49:289–297
54. Aroda VR, Edelstein SL, Goldberg RB, et al.;
Diabetes Prevention Program Research Group.
Long-term metformin use and vitamin B12 deficiency in the Diabetes Prevention Program
Outcomes Study. J Clin Endocrinol Metab
2016;101:1754–1761
55. Ali MK, Bullard KM, Saydah S, Imperatore G,
Gregg EW. Cardiovascular and renal burdens of
prediabetes in the USA: analysis of data from
serial cross-sectional surveys, 1988–2014. Lancet
Diabetes Endocrinol 2018;6:392–403
56. Huang Y, Cai X, Mai W, Li M, Hu Y. Association between prediabetes and risk of cardiovascular disease and all cause mortality:
systematic review and meta-analysis. BMJ
2016;355:i5953
57. Bress AP, King JB, Kreider KE, et al.; SPRINT
Research Group. Effect of intensive versus
standard blood pressure treatment according to
baseline prediabetes status: a post hoc analysis
of a randomized trial. Diabetes Care 2017;40:
1401–1408
58. Butcher MK, Vanderwood KK, Hall TO,
Gohdes D, Helgerson SD, Harwell TS. Capacity
of diabetes education programs to provide both
diabetes self-management education and to
implement diabetes prevention services. J Public
Health Manag Pract 2011;17:242–247
S33
Copyright of Diabetes Care is the property of American Diabetes Association and its content
may not be copied or emailed to multiple sites or posted to a listserv without the copyright
holder’s express written permission. However, users may print, download, or email articles for
individual use.

Purchase answer to see full
attachment

We offer the bestcustom writing paper services. We have done this question before, we can also do it for you.

Why Choose Us

  • 100% non-plagiarized Papers
  • 24/7 /365 Service Available
  • Affordable Prices
  • Any Paper, Urgency, and Subject
  • Will complete your papers in 6 hours
  • On-time Delivery
  • Money-back and Privacy guarantees
  • Unlimited Amendments upon request
  • Satisfaction guarantee

How it Works

  • Click on the “Place Order” tab at the top menu or “Order Now” icon at the bottom and a new page will appear with an order form to be filled.
  • Fill in your paper’s requirements in the "PAPER DETAILS" section.
  • Fill in your paper’s academic level, deadline, and the required number of pages from the drop-down menus.
  • Click “CREATE ACCOUNT & SIGN IN” to enter your registration details and get an account with us for record-keeping and then, click on “PROCEED TO CHECKOUT” at the bottom of the page.
  • From there, the payment sections will show, follow the guided payment process and your order will be available for our writing team to work on it.